Pure Mathematics 3

Exercise 5D

- 1 a When $S = 4 \times 7^x$ $\log S = \log \left(4 \times 7^x\right)$ $\log S = \log 4 + \log 7^x$ $\log S = \log 4 + x \log 7$
 - **b** $\log S = x \log 7 + \log 4$ Gradient = $\log 7$ Intercept = $\log 4$
- **2 a** When $A = 6x^4$ $\log A = \log (6x^4)$ $\log A = \log 6 + \log x^4$ $\log A = \log 6 + 4 \log x$
 - **b** $\log A = 4 \log x + \log 6$ Gradient = 4Intercept = $\log 6$

3 a

	$\log x$	0.48	0.70	0.90	1	1.18						
	$\log y$	1.21	1.52	1.81	1.94	2.19						
b	log <i>y</i> 2.5 - 2-			_×*	×							
	1.5 0.5 - 0 -	0.2 ().4 0.6	0.8 1	1.2 1	.4 logx						
c	y = ay	x^n	n									
	$\log y$	$\log y = \log (ax^n)$ $\log y = \log a + \log x^n$										
	$\log y$	$\log y = \log a + n \log x$										
	$\log y$	$\log y = n \log x + \log a$										
	Gradient = n											
	Intercept = $\log a$											
	$n = \frac{2.19 - 1.21}{1.18 - 0.48} = \frac{0.98}{0.7} = 1.4$											

Reading the intercept from the graph, $\log a = 0.55$ $a = 10^{0.55} = 3.548...$ a = 3.5, n = 1.4

P Pearson

$$\log b = \frac{5.82 - 1}{9 - 0} = \frac{4.82}{9} = 0.53555...$$

$$b = 10^{0.53555...} = 3.43...$$

Reading the intercept from the graph,

$$\log a = 1$$

$$a = 10^{1} = 10$$

$$a = 10, b = 3.4$$

Solution Bank

Pure Mathematics 3

- 5 c $R = am^b$ $\log R = \log (am^b)$ $\log R = \log a + \log m^b$ $\log R = \log a + b \log m$ Gradient = b Intercept = $\log a$ Calculating the gradient from the table, $b = \frac{3.88 - 0.62}{2.81 - (-1.52)} = \frac{3.26}{4.33} = 0.75288...$ Reading the intercept from the graph, $\log a = 1.78$ $a = 10^{1.78} = 60.255...$ a = 60, b = 0.75
 - **d** $R = 60m^{0.75}$ When m = 80 $R = 60(80)^{0.75} = 1604.97...$ 1605 kcal/day

c $f = AR^b$

 $log f = log (AR^b)$ $log f = log A + log R^b$ log f = log A + b log R log y = b log R + log AGradient = b
Intercept = log A
Calculating the gradient from the table, $b = \frac{0.95 - 3.69}{3 - 0} = \frac{-2.74}{3} = -0.91...$ Reading the intercept from the graph, log A = 3.76 $A = 10^{3.76} = 5754.39...$ A = 5800, b = -0.9

Solution Bank

6 d $f = 5800R^{-0.9}$ per 100 000 words When R = 57f = 152.45...For 455 125 words, $4.55125 \times f = 693.85...$ 694 times

7 a

a							
	t	0	10	20	30	40	50
	log	0.8	0.9	1.0	1.1	1.2	1.3
	P^{-}	8	8	8	3	6	7

b When $P = ab^t$ $\log P = \log (ab^t)$ $\log P = \log a + \log b^t$ $\log P = \log a + t \log b$

d Gradient = log b Intercept = log a Calculating the gradient from the table, $log b = \frac{1.37 - 0.88}{50 - 0} = \frac{0.49}{50} = 0.0098$ $b = 10^{0.0098} = 1.0228...$ Reading the intercept from the graph, log a = 0.88 $a = 10^{0.88} = 7.5857...$ a = 7.59, b = 1.03

e The rate of growth is often proportional to the size of the population

8 a $N = ab^{t}$ $\log N = \log (ab^{t})$ $\log N = \log a + \log b^{t}$ $\log N = \log a + t \log b$ Gradient = $\frac{2.55 - 1.6}{10 - 0} = \frac{0.95}{10} = 0.095$ Intercept = 1.6 $\log N = 0.095t + 1.6$

Pure Mathematics 3

Solution Bank

8 **b** $\log a = 1.6$ $a = 10^{1.6} = 39.8...$ $\log b = 0.095$ $b = 10^{0.095} = 1.2445...$ a = 40, b = 1.2

- \mathbf{c} a is the initial number of sick people
- **d** $N = ab^t$ $N = 40(1.2)^{30} = 9495.052 = 9500 (2 \text{ s.f.})$ After 30 days people may start to recover, or the disease may stop spreading as quickly.
- 9 a $A = pw^q$ $\log A = m \log w + c$ Intercept = -0.1049 Gradient = 2 $\log A = 2 \log w - 0.1049$
 - **b** $A = pw^q$ $\log A = \log (pw^q)$ $\log A = \log p + \log w^q$ $\log A = \log p + q \log w$ Equating coefficients q = 2 $\log p = -0.1049$ $p = 10^{-0.1049}$ p = 0.785416...
 - **c** The shapes are circles. Multiply p by 4 $4p = 3.1416... \approx \pi$ So p is approximately $\frac{1}{4}$ of π

So
$$A = \frac{\pi}{4} w^2$$

The width is the diameter of the circle

so
$$A = \frac{\pi}{4} (2r)^2 = \pi r^2$$