Pure Mathematics 3

Exercise 5D

1 a When $S=4 \times 7^{x}$
$\log S=\log \left(4 \times 7^{x}\right)$
$\log S=\log 4+\log 7^{x}$
$\log S=\log 4+x \log 7$
b $\log S=x \log 7+\log 4$
Gradient $=\log 7$
Intercept $=\log 4$
2 a When $A=6 x^{4}$
$\log A=\log \left(6 x^{4}\right)$
$\log A=\log 6+\log x^{4}$
$\log A=\log 6+4 \log x$
b $\log A=4 \log x+\log 6$
Gradient $=4$
Intercept $=\log 6$
3 a

$\log x$	0.48	0.70	0.90	1	1.18
$\log y$	1.21	1.52	1.81	1.94	2.19

b

c $y=a x^{n}$
$\log y=\log \left(a x^{n}\right)$
$\log y=\log a+\log x^{n}$
$\log y=\log a+n \log x$
$\log y=n \log x+\log a$
Gradient $=n$
Intercept $=\log a$
Calculating the gradient from the table,
$n=\frac{2.19-1.21}{1.18-0.48}=\frac{0.98}{0.7}=1.4$
Reading the intercept from the graph,
$\log a=0.55$
$a=10^{0.55}=3.548 \ldots$
$a=3.5, n=1.4$

4 a

x	2	3	5	6.5	9
$\log y$	2.10	2.63	3.61	4.49	5.82

b

c $y=a b^{x}$
$\log y=\log \left(a b^{x}\right)$
$\log y=\log a+\log b^{x}$
$\log y=\log a+x \log b$
$\log y=x \log b+\log a$
Gradient $=\log b$
Intercept $=\log a$
Calculating the gradient from the table and the graph,

Reading the intercept from the graph, $\log a=1$

$$
a=10^{1}=10
$$

$$
a=10, b=3.4
$$

5 a

$\log m$	-1.52	-0.39	0.62	1.54	2.81
$\log R$	0.62	1.51	2.29	2.88	3.88

b

$$
\begin{aligned}
& \log b=\frac{5.82-1}{9-0}=\frac{4.82}{9}=0.53555 \ldots \\
& b=10^{0.53555 \ldots}=3.43 \ldots
\end{aligned}
$$

5 c $R=a m^{b}$
$\log R=\log \left(a m^{b}\right)$
$\log R=\log a+\log m^{b}$
$\log R=\log a+b \log m$
Gradient $=b$
Intercept $=\log a$
Calculating the gradient from the table,
$b=\frac{3.88-0.62}{2.81-(-1.52)}=\frac{3.26}{4.33}=0.75288$...
Reading the intercept from the graph, $\log a=1.78$
$a=10^{1.78}=60.255 \ldots$
$a=60, b=0.75$
d $R=60 m^{0.75}$
When $m=80$
$R=60(80)^{0.75}=1604.97 \ldots$
$1605 \mathrm{kcal} / \mathrm{day}$
6 a

$\log R$	0	1	2	3
$\log f$	3.69	2.94	1.96	0.95

b

c $f=A R^{b}$
$\log f=\log \left(A R^{b}\right)$
$\log f=\log A+\log R^{b}$
$\log f=\log A+b \log R$
$\log y=b \log R+\log A$
Gradient $=b$
Intercept $=\log A$
Calculating the gradient from the table,
$b=\frac{0.95-3.69}{3-0}=\frac{-2.74}{3}=-0.91 \ldots$
Reading the intercept from the graph,
$\log A=3.76$
$A=10^{3.76}=5754.39 \ldots$
$A=5800, b=-0.9$

6 d $f=5800 R^{-0.9}$ per 100000 words
When $R=57$
$f=152.45 \ldots$
For 455125 words, $4.55125 \times f=693.85 \ldots$ 694 times

7 a

t	0	10	20	30	40	50
\log	0.8	0.9	1.0	1.1	1.2	1.3
P	8	8	8	3	6	7

b When $P=a b^{t}$
$\log P=\log \left(a b^{\dagger}\right)$
$\log P=\log a+\log b^{t}$
$\log P=\log a+t \log b$
c

d Gradient $=\log b$
Intercept $=\log a$
Calculating the gradient from the table,
$\log b=\frac{1.37-0.88}{50-0}=\frac{0.49}{50}=0.0098$

$$
b=10^{0.0098}=1.0228 \ldots
$$

Reading the intercept from the graph,
$\log a=0.88$
$a=10^{0.88}=7.5857 \ldots$
$a=7.59, b=1.03$
e The rate of growth is often proportional to the size of the population

8 a $N=a b^{t}$
$\log N=\log \left(a b^{t}\right)$
$\log N=\log a+\log b^{t}$
$\log N=\log a+t \log b$
Gradient $=\frac{2.55-1.6}{10-0}=\frac{0.95}{10}=0.095$
Intercept $=1.6$
$\log N=0.095 t+1.6$

Pure Mathematics 3

8 b $\log a=1.6$
$a=10^{1.6}=39.8 \ldots$
$\log b=0.095$
$b=10^{0.095}=1.2445 \ldots$
$a=40, b=1.2$
c a is the initial number of sick people
d $N=a b^{t}$
$N=40(1.2)^{30}=9495.052=9500(2$ s.f.)
After 30 days people may start to recover, or the disease may stop spreading as quickly.

9 a $A=p w^{q}$
$\log A=m \log w+c$
Intercept $=-0.1049$
Gradient $=2$
$\log A=2 \log w-0.1049$
b $A=p w^{q}$
$\log A=\log \left(p w^{q}\right)$
$\log A=\log p+\log w^{q}$
$\log A=\log p+q \log w$
Equating coefficients

$$
\begin{aligned}
& q=2 \\
& \log p=-0.1049 \\
& p=10^{-0.01049} \\
& p=0.785416 \ldots
\end{aligned}
$$

c The shapes are circles.
Multiply p by 4
$4 p=3.1416 \ldots \approx \pi$
So p is approximately $\frac{1}{4}$ of π
So $A=\frac{\pi}{4} w^{2}$
The width is the diameter of the circle
so $A=\frac{\pi}{4}(2 r)^{2}=\pi r^{2}$

